A MODIFICATION OF THE REDLICH-KWONG-SOAVE EQUATION OF STATE AND THE DETERMINATION OF ITS PARAMETERS ON THE BASIS OF SATURATED VAPOUR PRESSURES AND SECOND Virial coefficients of pure substances

Petr Voñka, Pavel Dittrich and Josef P. Novák
Department of Physical Chemistry, Prague Institute of Chemical Technology, 16628 Prague 6

Abstract

The temperature dependence of parameter $a=a\left(T_{\mathrm{r}}\right)$ of the Redlich-Kwong-Soave equation of state was modified. To calculate the corresponding individual parameters, an effective algorithm applying the Newton method was proposed. The parameters were determined for 60 substances, and the new modification correlates saturated vapour pressures from the values of $p_{\mathrm{r}}=$ $=0.001$ to $p_{\mathrm{r}}=1.0$ with the accuracy which is usually better than 0.2% and is comparable with that attained in terms of the Wagner equation. The modification proposed is utilized above all when applying the equation of state to the calculation of vapour-liquid equilibrium.

Two approaches are used for calculating vapour-liquid equilibrium: The classical approach employs activity coefficients which characterize the liquid phase behaviour. The vapour phase is (usually) considered to be an ideal gas or it is described by the virial equation of state truncated after the second term. On the basis of saturated vapour pressures of pure substances and experimental equilibrium data, the activity coefficients are determined and then correlated by a suitable equation.

The main advantage of this approach is its relative simplicity when calculating back the equilibrium and particularly the fact that for the systems with small deviations from ideality, the experimental data are described with high accuracy. This high accuracy is attained among others because the experimental data on saturated vapour pressures of pure substances or the correlation equations which reproduce these data in limits of experimental errors are used. On the other hand, a great disadvantage of this method is its limitation to low pressures and impossibility to be applied in the critical region.

The second, recently considerably elaborated approach, stems from the equation of state which is applied to both the phases. In this direction, the most different versions of the van der Waals or Redlich-Kwong equations ${ }^{1}$ are applied most often. Especially large extension has reached the Soave ${ }^{2}$ modification of the Redlich-- Kwong equation (hereafter RKS equation) and the Peng-Robinson equation ${ }^{3}$.

This approach suffers from two disadvantages which did not allow its wider practical employment before computers having been introduced. These are partly more complicated calculations of equilibria and partly an unsufficiently accurate description of saturated vapour pressures in terms of the generalized equations of state.

As it has been mentioned, the calculation of vapour-liquid equilibrium is conditioned to a considerable degree by the accuracy of saturated vapour pressures of pure substances. To attain a better agreement in saturated vapour pressures on using the Redlich-Kwong equation, Soave ${ }^{2}$ modified the temperature dependence of parameter a in this equation. The generalized dependence obtained represents very well the behaviour of hydrocarbons and weakly polar substances. The accuracy of calculated saturated vapour pressures lies within $1-3 \%$ according to various authors, see, e.g., Sandarusi and coworkers ${ }^{4}$.

In this work an algorithm is proposed based on the Newton method making it possible to establish the required number of individual substance parameters on the basis of data on saturated vapour pressures and, if need be, on second virial coefficients.

CALCULATIONS

The modified Redlich-Kwong equation was used here in the form

$$
\begin{equation*}
p=R T /\left(V_{\mathrm{m}}-b\right)-a /\left[V_{\mathrm{m}}\left(V_{\mathrm{m}}+c\right)\right], \tag{1}
\end{equation*}
$$

where the temperature dependence of parameters a, b, c was considered in the general form

$$
\begin{align*}
a & =a_{\mathrm{c}} \exp \left(\sum_{k=1} a_{\mathrm{k}}\left(T_{\mathrm{f}}^{\mathrm{m}_{k}}-1\right)\right), \\
b & =b_{\mathrm{c}}\left(1+b_{1}\left(T_{\mathbf{r}}^{\mathbf{b}_{2}}-1\right)\right) \tag{2}\\
c & =c_{\mathrm{c}}\left(1+c_{1}\left(T_{\mathrm{r}}^{\mathrm{c}_{2}}-1\right)\right)
\end{align*}
$$

The dependence of parameter $a=a\left(T_{\mathrm{r}}\right)$ can be regarded to be an extension of the dependence used by Heyen ${ }^{5}$ and/or by other authors ${ }^{6-8}$. A temperature dependence of parameter b was considered by Heyen ${ }^{5}$ and Fuller ${ }^{9}$. Further dependences for $a=a\left(T_{\mathrm{r}}\right)$ can be found in the literature ${ }^{2,4,10-14}$.

The values of constants a_{c}, b_{c}, c_{c} were determined from the conditions valid at the critical point - see Appendix 1. The calculations were carried out always for a firmly chosen set of exponents $\left\{m_{\mathbf{k}}\right\}$ and/or b_{2}, c_{2}, too.

Parameters $\left\{a_{\mathrm{k}}\right\}$ and/or b_{1}, c_{1} were chosen so that the criterion function

$$
\begin{equation*}
F=\sum_{i=1}^{n_{p}}\left[\left(p_{i, \mathrm{exp}}^{\mathrm{o}}-p_{\mathrm{i}, \mathrm{calc}}^{\mathrm{o}}\right) / p_{\mathrm{i}, \mathrm{exp}}^{\mathrm{o}}\right]^{2}+w \sum_{j=1}^{n_{B}}\left(B_{\mathrm{j}, \mathrm{exp}}-B_{\mathrm{j}, \mathrm{calc}}\right)^{2} \tag{3}
\end{equation*}
$$

should acquire a minimum value.

When suggesting criterion function (3), we started from the assumption that the variance of relative deviation of experimental vapour pressure data was approximately constant in the whole temperature range. Further we started from the idea that especially for substances with a low value of critical temperature (hydrogen, nitrogen, oxygen, methane, etc.) it would be necessary to include higher temperature data (e.g., virial coefficient) into the calculation to describe well the $P-V-T$ behaviour of the substance even in the supercritical region.

The algorithm itself of the calculation of parameters $\left\{a_{\mathbf{k}}\right\}$ - if need be also considered parameters b_{1}, c_{1} are included in the set - consists of the following steps:

1. The initial approximation of $\left\{a_{k}\right\}=\left\{a_{k}^{0}\right\}$ is chosen; usually we take $a_{k}^{0}=0$ for all the values of index k considered.
2. From the equilibrium conditions

$$
\begin{align*}
p\left(T, V_{\mathrm{m}}^{\mathrm{L}}, \boldsymbol{a}\right) & =p\left(T, V_{\mathrm{m}}^{\mathrm{g}}, \boldsymbol{a}\right) \\
\ln f\left(T, V_{\mathrm{m}}^{\mathrm{L}}, \boldsymbol{a}\right) & =\ln f\left(T, V_{\mathrm{m}}^{\mathrm{g}}, \boldsymbol{a}\right) \tag{4}
\end{align*}
$$

we determine the molar volumes of saturated liquid $\left(V_{\mathrm{m}}^{\mathrm{L}}\right)$ and vapour $\left(V_{\mathrm{m}}^{\mathrm{g}}\right)$ phases for each temperature $T=T_{\mathrm{i}}, i=1,2, \ldots, n_{\mathrm{p}}$, and on inserting into the left- or right-hand side of the first equation of set (4) we determine the value of $p_{i, c a l e}^{o}$.
3. On applying the Newton-Raphson method to the calculation of M parameters $\left\{a_{k}\right\}$, we solve in each iteration step the system of linear equations

$$
\begin{gather*}
\sum_{j=1}^{M}\left(\sum_{i=1}^{n_{p}} w_{\mathrm{i}} \frac{\mathrm{~d} p_{\mathrm{i}}^{\mathrm{o}}}{\mathrm{~d} a_{\mathrm{k}}} \frac{\mathrm{~d} p_{\mathrm{i}}^{\mathrm{o}}}{\mathrm{~d} a_{\mathrm{j}}}+w \sum_{i=1}^{n_{\mathrm{B}}} \frac{\mathrm{~d} B_{\mathrm{i}}}{\mathrm{~d} a_{\mathrm{j}}} \frac{\mathrm{~d} B_{\mathrm{i}}}{\mathrm{~d} a_{\mathrm{k}}}\right) \Delta a_{\mathrm{j}}= \\
=\sum_{i=1}^{n_{\mathrm{p}}} w_{\mathrm{i}}\left(p_{\mathrm{i}, \mathrm{exp}}^{\mathrm{o}}-p_{\mathrm{i}, \mathrm{calc}}^{\mathrm{o}}\right) \frac{\mathrm{d} p_{\mathrm{i}}^{\mathrm{o}}}{\mathrm{~d} a_{\mathrm{k}}}+w \sum_{i=1}^{n_{\mathrm{B}}}\left(B_{\mathrm{i}, \mathrm{exp}}-B_{\mathrm{i}, \mathrm{calc}}\right) \frac{\mathrm{d} B_{\mathrm{i}}}{\mathrm{~d} a_{\mathrm{k}}}, \\
k=1,2, \ldots, M, \quad w_{\mathrm{i}}=\left(p_{\mathrm{i}, \mathrm{exp}}^{\mathrm{o}}\right)^{-2} . \tag{5}
\end{gather*}
$$

The value of $\left(\mathrm{d} p_{\mathrm{i}}^{0} / \mathrm{d} a_{\mathrm{j}}\right)$ is determined so that the left- and right-hand side of system of equations (4) is differentiated with respect to parameter a_{j} at point $T=T_{\mathrm{i}}$. We obtain the system of two equations

$$
\begin{align*}
& \left(\partial p / \partial V_{\mathrm{m}}^{\mathrm{L}}\right)_{\mathrm{T}}\left(\partial V_{\mathrm{m}}^{\mathrm{L}} / \partial a_{\mathrm{j}}\right)_{\mathrm{T}}+\left(\partial p / \partial a_{\mathrm{j}}\right)_{\mathrm{T}, \mathrm{v}_{\mathrm{m}}^{\mathrm{L}}}=\left(\partial p / \partial V_{\mathrm{m}}^{\mathrm{g}}\right)_{\mathrm{T}}\left(\partial V_{\mathrm{m}}^{\mathrm{g}} / \partial a_{\mathrm{j}}\right)_{\mathrm{T}}+\left(\partial p / \partial a_{\mathrm{j}}\right)_{T, v_{\mathrm{m}} \mathrm{~g}}, \tag{6}\\
& \left(\partial \ln f / \partial V_{\mathbf{m}}^{\mathbf{L}}\right)_{\mathrm{T}}\left(\partial V_{\mathbf{m}}^{\mathrm{L}} / \partial a_{\mathrm{j}}\right)_{\mathrm{T}}+\left(\partial \ln f / \partial a_{\mathrm{j}}\right)_{\mathrm{T}, \mathbf{v}_{\mathbf{m}}^{\mathbf{L}}}= \\
& =\left(\partial \ln f / \partial V_{\mathrm{m}}^{\mathbf{g}}\right)_{\mathrm{T}}\left(\partial V_{\mathrm{m}}^{\mathbf{g}} / \partial a_{\mathrm{j}}\right)_{\mathrm{T}}+\left(\partial \ln f / \partial a_{\mathrm{j}}\right)_{\mathrm{T}, \mathrm{v}_{\mathrm{m}} \mathrm{~g}}
\end{align*}
$$

for two unknows $\left(\partial V_{\mathrm{m}}^{\mathrm{L}} / \partial a_{\mathrm{j}}\right)_{\mathrm{T}}$ and $\left(\partial V_{\mathrm{m}}^{\mathrm{g}} / \partial a_{\mathrm{j}}\right)_{\mathrm{T}}$. After its solution and following insertion into the left- or right-hand side of the first equation of system (6), we obtain the required value of $\left(\mathrm{d} p_{\mathrm{i}}^{\circ} / \mathrm{d} a_{\mathrm{j}}\right)_{\mathrm{T}}$.

The values of derivatives $\left(\mathrm{d} B / \mathrm{d} a_{\mathrm{k}}\right)$ are determined easily from the relation

$$
\begin{equation*}
B=b-a /(\boldsymbol{R} T) \tag{7}
\end{equation*}
$$

The relationships for calculating the thermodynamic quantities and their derivatives are given in Appendix 2.
4. After solving system (5), the new approximation of adjustable parameters is determined from the relation

$$
\begin{equation*}
a_{\mathbf{k}}^{(1)}=a_{\mathbf{k}}^{(0)}+\eta \Delta a_{\mathbf{k}}, \quad k=1,2, \ldots, M \tag{8}
\end{equation*}
$$

where $\eta, \eta \in\langle 0,1\rangle$, is the relaxation (reduction) parameter. We usually required $\max \left|\eta \Delta a_{\mathbf{k}}\right| \leqq 1$. If $\left\|\Delta a_{\mathbf{k}}\right\|<\varepsilon$ (e.g., $\varepsilon=10^{-4}$), then the iteration process is finished. In opposite case, the calculation is repeated starting from point 2.

The input data of $p_{i, \exp }^{0}$ were obtained in two ways: Firstly, "pseudoexperimental" data were concerned obtained by using the tabulated constants ${ }^{15}$ of the Wagner equation ${ }^{16}$ using 10 K step within the whole region of validity of this equation. In case of n-hydrocarbons and several other substances, special data ${ }^{17-19}$ were used. The virial coefficients were taken from the books by Dymond and Smith ${ }^{20}$ and Dymond and coworkers ${ }^{21}$.

Since the assumption of constant variance of relative error of saturated vapour pressure data is not fulfilled for the temperatures close to the triple point temperature, we confined ourselves usually to the temperature interval for which $p_{r}^{\circ}>0.001$ holds.

RESULTS AND DISCUSSION

The calculations were performed for more than 60 substances for various temperature dependences of parameters a, b, c chosen and various values of weight w. On their basis, the following conclusions were drawn:

1. The effect of the chosen temperature dependence of parameters b, c on the value of σ_{p} is quite negligible, which agrees with the information of Adachi and coworkers ${ }^{22}$. Also the difference between the cases $z_{c}=1 / 3$ (i.e., $b_{c}=c_{c}$, and only the values of T_{c} and p_{c} are employed to determine the values of b_{c}, a_{c}) and $z_{c}=$ $=p_{c} V_{\mathrm{mc}} / \boldsymbol{R} T_{\mathrm{c}}$) (i.e., generally $b_{\mathrm{c}} \neq c_{\mathrm{c}}$, and the knowledge of critical values $T_{\mathrm{c}}, p_{\mathrm{c}}$, V_{mc} is required) is, from the point of view of σ_{p} values, quite negligible. For these reasons we have considered for final calculations (see Appendix 1)

$$
\begin{gather*}
b=c=b_{\mathrm{c}}=0.08664 \boldsymbol{R} T_{\mathrm{c}} / p_{\mathrm{c}}, \\
a_{\mathrm{c}}=0.42748 \boldsymbol{R}^{2} T_{\mathrm{c}}^{2} / p_{\mathrm{c}} . \tag{9}
\end{gather*}
$$

It is evident from Eq. (7) that the calculated value of the second virial coefficient does not depend on the value of parameter c. It was also one of reasons why we differentiated between parameters b and c in equation of state (1) (unlike the original version of the RKS equation). We assumed that by choosing suitably the temperature dependence $c=c(T)$, we should attain a substantial improvement of the value of σ_{p} without influencing the value of σ_{B}. This assumption proved to be incorrect for the value of σ_{p} depended only little on the chosen temperature dependence $c=c(T)$.
2. The dominant effect on the value of σ_{p} is shown by the number of adjustable parameters chosen in the prescription for the temperature dependence $a=a(T)$. To reach the value $\sigma_{\mathrm{p}}<0.2 \%$, it is usually sufficient to take four parameters (in some cases even less). It is documented for methane, n-decane, and water in Table I.
3. Two sets of exponents were tested, viz.

$$
\begin{aligned}
& A_{1}=1,1 \cdot 5,3,6 \text { and } \\
& A_{2}=1,0 \cdot 5,-0 \cdot 5,-1
\end{aligned}
$$

A so-called Wagner set of exponents A_{1} usually yielded better (however, not considerably) results, i.e., a lower value of σ_{p}. The comparison of the set of exponents A_{1} and A_{2} for hydrocarbons (the same number of parameters is always considered) is given in Table II.

It is apparent at first sight that from propane to hexane the deviations are higher than 0.25%. It is caused by the fact that all the data recommended by the authors of paper ${ }^{17}$ were included into the calculation. That not all the data are in perfect order, it is shown in Fig. 1 where the dependence of the value of $\Delta p_{i} / p_{i}$ on temperature for propane is plotted. It is clear that the relative high value of σ_{p} is not brought about by the correlation relation but by the experimental points which have too large variance.

Table I
The dependence of the σ_{p} value for methane, decane, and water on the number of parameters used (set $A_{1}, w=0$)

Number of parameters	Methane	Decane	Water
2	0.62	0.46	2.75
3	0.55	0.46	1.54
4	0.14	0.076	0.27

4. The choice of a non-zero weight w usually decreased the value of σ_{B} only unstrikingly, however, increased considerably the value of σ_{p}. For this reason we considered $w=0$ in final calculations, i.e., the values of second virial coefficients were not included into the calculation. Despite with substances for which the data on second virial coefficient were available, we determined the value of σ_{B}, i.e., we judged the agreement between the experimental and predicted values of the second virial coefficient. The presentation of values σ_{B} for individual substances need not be sufficiently informative for the absolute value of deviation ($B_{\mathrm{i}, \mathrm{exp}}-B_{\mathrm{i}, \text { calc }}$)

Table II
The comparison of values of σ_{p} for the sets of exponents A_{1} and A_{2} for n-hydrocarbons ($w=0$)

Substance	Number of parameters M	Set A_{1}	Set A_{2}
Methane	4		
Ethane	4	0.043	0.102
Propane	4	0.277	0.276
Butane	4	0.470	0.492
Pentane	4	0.381	0.407
Hexane	4	0.483	0.484
Octane	4	0.420	0.607
Nonane	3	0.153	0.240
Decane	3	0.273	0.245
Tetradecane	3	0.076	0.074
Pentadecane	3	0.139	0.146
Hexadecane	3	0.123	0.105
		0.170	0.106

Fig. 1
The values of $\Delta p_{\mathrm{i}} / p_{\mathrm{i}}$ at single temperatures for propane

decreases considerably with increasing temperature. Omitting the value of the second virial coefficient at the lowest temperature from the data set usually causes a significant decrease in σ_{B}. Altogether the data on the second virial coefficient for more than 30 substances were available. The value of σ_{B} lay within $20-400 \mathrm{~cm}^{3} / \mathrm{mol}$ in dependence on the substance and on the temperature range (above all at its lower limit) in which the value of the second virial coefficient were considered (σ_{B} increased with the molecule size). At low temperature the calculated virial coefficients were always larger than experimental ones.

Surprisingly very good agreement was attained between the calculated and experimental values of the second virial coefficient even for substances with very low value of critical temperature (see Table III). The reason of good extrapolation of temperature dependence $a=a(T)$ high above the critical temperature is probably the suitably chosen exponential form of this dependence and the fact that the adjustable parameter at expression $\left(T_{\mathrm{r}}^{6}-1\right.$) is always negative, which implies (see Eq. (7)) the validity of the relation

$$
\begin{equation*}
\lim _{T \rightarrow \infty} B(T)=b \quad\left(=b_{c}\right) . \tag{11}
\end{equation*}
$$

5. The importance of good description of saturated vapour pressures can be demonstrated on the 1,3 -butadiene(1)-butane(2) system. In these calculations we started from the smoothed $p-x_{1}-y_{1}$ data reported by Flebbe and coworkers ${ }^{23}$. These data comprise the whole concentration range and the temperatures of 278.15, $298.15,318.15$, and 338.15 K (pressure range 0.12 to 0.82 MPa). The $p-x_{1}$ curve at 278.15 J is plotted in Fig. 2 from which follows as well that the system forms an azeotropic mixture ($x_{1, \mathrm{az}}=0.825$).

Table III
The comparison of experimental and calculated values of the second virial coefficient of hydrogen ($w=0, M=4$, set $A_{1}, \sigma_{\mathrm{p}}=0.06 \%$)

$$
T, \mathrm{~K} \quad B_{\mathrm{exp}}, \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \quad \begin{aligned}
& B_{\mathrm{exp}}-B_{\mathrm{catc}}, \\
& \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{aligned}
$$

14	-254	-50
25	-110	-4
50	-33	-20
100	-2	-10
200	11	-7
300	15	-3
400	16	-3

In Fig. 2 we depict as well the calculated $p\left(x_{1}\right)$ curves for the RKS $\left(\omega_{1}=0 \cdot 1814\right.$, $\omega_{2}=0.193$) and modified RKS equations of state. The classical combination rules ($b=c$) were applied in these calculations:

$$
\begin{gather*}
b=\sum_{i=1}^{N} x_{\mathrm{i}} b_{\mathrm{i} \mathrm{i}} \\
a=\sum_{i=1}^{N} \sum_{j=1}^{N} x_{\mathrm{i}} x_{\mathrm{j}} a_{\mathrm{ij}}, \tag{12}\\
a_{\mathrm{ij}}=\left(1-k_{\mathrm{ij}}\right)\left(a_{\mathrm{i} \mathrm{i}} a_{\mathrm{j} \mathrm{j}}\right)^{1 / 2}, \quad k_{\mathrm{ij}}=k_{\mathrm{j} \mathrm{i}}
\end{gather*}
$$

As it can be seen in Fig. 2, the use of $k_{12}=0$ predicts in both cases practically an ideal mixture, the RKS equation, with respect to the fact that it intersects the experimental boiling point curve, giving better agreement in calculated pressure than the proposed modification of the RKS equation.

The optimum values of k_{ij} were determined by minimizing the function

$$
\begin{align*}
S & =\sum_{i=1}^{n_{\mathrm{LV}}} \min S_{\mathrm{i}}=\sum_{i=1}^{n_{\mathrm{LV}}} \min \left\{\left(\frac{x_{1, \mathrm{calc}}-x_{1 . \exp }}{\sigma_{\mathrm{x}_{1}}}\right)^{2}+\right. \\
& \left.+\left(\frac{y_{1, \mathrm{calc}}-y_{1, \mathrm{exp}}}{\sigma_{\mathrm{y}_{1}}}\right)^{2}+\left(\frac{p_{\mathrm{calc}}-p_{\mathrm{exp}}}{\sigma_{\mathrm{pLV}}}\right)^{2}\right\} \tag{13}
\end{align*}
$$

where $x_{1, \text { calc }}, y_{1, \text { calc }}, p_{\text {calc }}$ are the calculated values of the liquid and vapour phase compositions and the pressure in the system at the given temperature (assuming that it is determined with an accuracy higher than that of remaining variables). The procedure for calculating $x_{1, \text { calc }}, y_{1, \text { calc }}$, and $p_{\text {calc }}$ is outlined in Appendix 3. The standard deviations of values x_{1}, y_{1}, p were chosen to be $\sigma_{\mathrm{x}_{1}}=\sigma_{\mathrm{y}_{1}}=0.001, \sigma_{\mathrm{pLV}}=$ $=0.005 p_{\text {exp }}$.

Fig. 2
The dependence of $p-x_{1}$ in the 1,3 -butadiene-(1)-butane(2) at the temperature of $5^{\circ} \mathrm{C}$ for RKS $(1,2)$ and modified $\operatorname{RKS}(3,4)$ equations; $1,3 k_{12}=0,2 k_{12}=0 \cdot 0126,4 k_{12}=$ $=0.0168$

On using the optimum $k_{i j}$ values, the situation is changed drastically, and with the modified RKS equation, the values are obtained which differ only slightly from the experimental ones. For instance, the mean deviation in pressure on the 278.15 K isotherm is $0.32 \mathrm{kPa}(0.22 \%)$ whereas for the RKS equation, it is the value of 1.08 kPa (0.78%).

The dependence of quantities $S_{y}, S_{\text {pLV }}$, and $\sigma_{\mathrm{c}}=\sqrt{ }\left(S /\left(n_{\mathrm{LV}}-1\right)\right)$, where S is the used objective function determined by Eq. (13), on the chosen parameter k_{ij} is illustrated for both the equations of state in Fig. 3. The points on all four isotherms were considered in these calculations. With the RKS equation, for the point of minimum of function $\sigma_{\mathrm{c}}=f\left(k_{\mathrm{ij}}\right)$ holds $k_{\mathrm{ij}}=0.0126$ which lies between the minimum of the S_{y} and S_{pLV} functions. However, nor this optimum value of k_{ij} ensures the existence of azeotropic point in this system. Just at still higher values of $k_{\mathrm{ij}}(\approx 0.02)$, a maximum appears on curve $p=p\left(x_{1}\right)$ needed for the existence of azeotropic point.

For the modified RKS equation, the points of minimum of functions $\sigma_{\mathrm{c}}, S_{\mathrm{pLv}}, S_{\mathrm{y}}$ (and analogical S_{x} as well) practically coincide and $k_{\mathrm{ij}}=0.0168$ holds. This equation yields also much lower values of deviations ($S_{x}=0.04, S_{y}=0.04, S_{\mathrm{pLV}}=0.0146$, $\sigma_{c}=0.81$) unlike the original RKS equation ($S_{x}=0.24, S_{y}=0.22, S_{p L V}=1.41$, $\sigma_{\mathrm{c}}=4.81$).

CONCLUSION

When applying the equations of state to the calculation of vapour-liquid equilibrium, it is necessary that the equation of state should describe well the saturated vapour pressures of pure substances. For this purpose an effective procedure is proposed in this work which makes it possible, on the basis of saturated vapour

Fig. 3
The dependence of $S_{y}, S_{\mathrm{p}}, \sigma_{\mathrm{c}}$ on k_{12} in the 1,3-butadiene(1)-butane(2) system: ----$S_{\mathrm{pLV}}, \cdots-S_{\mathrm{y}},-\sigma_{\mathrm{c}}, 1$ RKS equation, 2 modified RKS equation
pressures of pure substances (or if need be of further quantities), to determine the temperature dependence of parameter $a=a\left(T_{\mathrm{r}}\right)$ in cubic equations of state for different substances. It was found that if the mean percent deviation between the calculated and experimental values of saturated vapour presures is to be lower than 0.2% for the temperature range $T_{\mathrm{r}} \in\langle 0.55,1\rangle$, it is usually necessary to take 4 parameters. The accuracy obtained is comparable with that obtained in terms of the Wagner equation. The substance-specific parameters were calculated for 60 substances and are given in Table IV.

On using the butadiene-butane system it is shown that the classical Soave equation of state, considering that it is unable to describe saturated vapour pressures of these substances with sufficient accuracy, fails when describing the vapour-liquid equilibrium in this system.

The authors thank Dr E. Thury from Dept. Chem. Eng., TU Budapest, Hungary, for her assissance in performing the computations.

APPENDIX 1

Calculation of Constants of Equation of State from Critical Constants

The way of determination of constants $a_{\mathrm{c}}, b_{\mathrm{c}}, c_{\mathrm{c}}$ in Eq. (2) is described briefly. Equation of state (1) is rewritten into the form

$$
\begin{equation*}
\beta_{0} V_{\mathrm{mh}}^{3}+\beta_{1} V_{\mathrm{m}}^{2}+\beta_{2} V_{\mathrm{m}}+\beta_{3}=0 \tag{A1-1}
\end{equation*}
$$

where

$$
\begin{gathered}
\beta_{0}=p, \quad \beta_{1}=p(c-b)-R T \\
\beta_{2}=-p b c-R T c+a, \quad \beta_{3}=-a b
\end{gathered}
$$

Critical point $T_{\mathrm{c}}, p_{\mathrm{c}}, V_{\mathrm{mc}}$ is a threefold root of Eq. $(A 1-1)$, and therefore it must hold

$$
\begin{gather*}
\beta_{0} V_{\mathrm{mc}}^{3}+\beta_{1} V_{\mathrm{mc}}^{2}+\beta_{2} V_{\mathrm{mc}}+\beta_{3}=0 \\
3 \beta_{0} V_{\mathrm{mc}}^{2}+2 \beta_{1} V_{\mathrm{mc}}+\beta_{2}=0 \tag{A1-3}\\
6 \beta_{0} V_{\mathrm{mc}}+2 \beta_{1}=0
\end{gather*}
$$

After inserting relations $(A 1-2)$ into system of equations $(A 1-3)$, the system of equations can be rearranged into the equivalent form

$$
\begin{gather*}
b^{3}+b^{2} V_{\mathrm{mc}}\left(2-3 z_{\mathrm{c}}\right) / z_{\mathrm{c}}+b V_{\mathrm{mc}}^{2}\left(3 z_{\mathrm{c}}^{2}-3 z_{\mathrm{c}}+1\right) / z_{\mathrm{c}}^{2}-V_{\mathrm{mc}}^{3}=0 \\
a b=p_{\mathrm{c}} V_{\mathrm{mc}}^{3} \tag{A1-4}\\
b-c=\left(3 z_{\mathrm{c}}-1\right) R T_{\mathrm{c}} / p_{\mathrm{c}}
\end{gather*}
$$

[^0]Table IV
The values of parameters a_{k} for the modified RKS equation (set of exponents \boldsymbol{A}_{1})

Substance	$T_{\mathrm{c}}, \mathrm{K}$	$p_{\mathrm{c}}, \mathrm{MPa}$	a_{1}	a_{2}
Argon	$150 \cdot 65$	$4 \cdot 8580$	0.170844	-0.948845
Hydrogen	$33 \cdot 19$	$1 \cdot 3096$	$2 \cdot 712114$	-3.196732
Nitrogen	$126 \cdot 20$	3.39961	-0.587035	-0.200463
Oxygen	$154 \cdot 70$	5.08987	0.163397	-1.08478
Carbon monoxide	$132 \cdot 85$	3.4935	-0.77261	-0.0787449
Carbon dioxide	304•15	$7 \cdot 37499$	7.47947	-9.38156
Water	$647 \cdot 13$	22.055	-1.213043	$0 \cdot 217229$
Methane	$190 \cdot 55$	4.599	-0.402502	-0.285776
Ethane	$305 \cdot 34$	$4 \cdot 871$	-1.612079	0.907125
Ethylene	$282 \cdot 55$	$5 \cdot 05088$	-0.856937	-0.0337492
Acetylene	308.30	$6 \cdot 1389$	0.886426	-2.13783
Propane	$369 \cdot 85$	$4 \cdot 246$	-1.608355	0.744260
Butane	$425 \cdot 14$	$3 \cdot 784$	0.137977	-1.379693
Isobutane	$408 \cdot 14$	$3 \cdot 65801$	-0.402591	-0.744602
1-Butene	$419 \cdot 57$	$4 \cdot 0176$	-1.047337	-0.0164517
cis-2-Butene	$435 \cdot 6$	$4 \cdot 205$	-1.50597	0.494440
trans-2-Butene	$428 \cdot 6$	4-1037	$0 \cdot 246551$	-1.50278
Isobutene	$417 \cdot 90$	$4 \cdot 00706$	-0.244438	-0.911925
1,3-Butadiene	$425 \cdot 0$	$4 \cdot 3266$	-0.4379348	-0.7385931
1-Butyne	$463 \cdot 70$	$4 \cdot 7116$	3.51879	-5.98171
Pentane	$469 \cdot 69$	3.364	-1.789687	$0 \cdot 800788$
Isopentane	$460 \cdot 43$	$3 \cdot 3859$	-0.904341	-0.218300
Hexane	$507 \cdot 50$	3.0120	0.785063	-2.312098
Isohexane	$498 \cdot 10$	$3 \cdot 03252$	-0.403115	-0.866969
3-Methylpentane	$504 \cdot 4$	3.12171	-0.370379	-0.868740
2,2-Dimethylbutane	$489 \cdot 4$	$3 \cdot 1127$	0.230666	-1.56623
2,3-Dimethylbutane	$500 \cdot 3$	3.1458	-0.153026	-1.13825
Heptane	$540 \cdot 10$	$2 \cdot 7324$	-0.877431	-0.456462
2,2-Dimethylpentane	433.77	3.1979	-0.539688	-0.673205
2,2,3-Trimethylbutane	$531 \cdot 17$	$2 \cdot 9491$	0.0929908	-1.41796
Octane	$568 \cdot 83$	$2 \cdot 487$	-0.179474	-1.395738
Nonane	$594 \cdot 60$	$2 \cdot 288$	-2.44444	1.338401
Decane	$617 \cdot 40$	2.104	-3.64083	2.538059
Undecane	$638 \cdot 80$	1.966	-3.89121	$2 \cdot 76242$
Dodecane	$658 \cdot 20$	$1 \cdot 824$	-3.81897	$2 \cdot 64177$
Tridecane	$676 \cdot 0$	1.720	-4.24070	$3 \cdot 04385$
Tetradecane	693.0	1.620	-4.69102	$3 \cdot 478924$
Pentadecane	$707 \cdot 0$	1.530	-5.86483	$4 \cdot 68264$
Hexadecane	$722 \cdot 0$	1.450	-6.01671	$4 \cdot 78870$
Cyclohexane	$553 \cdot 64$	$4 \cdot 0753$	-0.350706	-0.915668
Benzene	$562 \cdot 10$	$4 \cdot 8956$	-1.63780	0.548579
Toluene	$591 \cdot 72$	4-1064	--0.740226	-0.478415

Table IV
(Continued)

a_{3}	a_{4}	$T_{\text {min }}, \mathrm{K}$	$T_{\text {max }}, \mathrm{K}$	$\sigma_{p}, \%$	Note
0.415027	-0.091351	85	150	0.0375	a
1.00776	-0.220709	14	33	0.064	a
0.233627	-0.0711056	65	125	0.054	a
0.5451308	-0.1353647	70	145	0.060	a
0.241548	-0.0776285	68	132	0.0477	b
$2 \cdot 57301$	-0.339154	220	300	0.018	a
0.0293666	-0.05456365	273	623	0.170	c
0.211163	-0.0627246	90	189	0.04	d
-0.1093375	-0.0196467	90	303	0.27	d
0.220648	-0.0727288	135	275	0.07	a
0.785537	-0.152451	190	300	0.039	e
-0.00882805	-0.0471752	180	367	0.44	d
0.628285	-0.139818	210	420	0.38	d
0.461251	-0.123093	200	400	0.079	a
0.2417197	-0.0856401	210	410	0.07	a
0.0884511	-0.0610806	215	425	0.082	\boldsymbol{e}
0.683994	-0.170303	220	420	0.082	e
0.476284	-0.116501	210	410	0.069	a
0.488620	-0.139840	210	420	0.086	e
$2 \cdot 48835$	-0.443975	230	455	0.034	e
-0.0292675	-0.0452141	246	461	0.48	d
0.295650	-0.098310	230	450	0.08	a
0.935978	-0.200262	262	503	0.42	d
0.470680	-0.117149	260	490	0.066	a
0.452015	-0.112198	265	495	0.064	a
0.716396	-0.166150	245	485	0.085	a
0.582144	-0.144115	255	495	0.075	a
0.379682	-0.115396	285	525	0.079	a
0.469871	-0.122328	260	428	0.041	e
0.646520	-0.145143	270	530	0.068	a
0.718362	-0.185759	304	548	0.153	d
-0.249255	0	325	511	0.273	d
-0.487378	0	344	445	0.076	d
-0.540136	0	362	498	0.095	d
--0.519515	0	379	520	$0 \cdot 106$	d
-0.605702	0	395	540	0.081	d
-0.694457	0	410	559	0.139	d
-0.945254	0	424	577	0.123	d
-0.960467	0	438	594	0.170	d
0.537822	-0.129771	300	540	0.056	a
0. 128747	-0.0754409	280	550	0.080	a
0.380103	-0.111972	310	580	0.072	a

Table IV
(Continued)

Substance	$T_{\mathrm{c}}, \mathrm{K}$	$p_{\mathrm{c}}, \mathrm{MPa}$	a_{1}	a_{2}
o-Xylene	$630 \cdot 25$	3.7330	-0.514507	-0.775655
m-Xylene	616.97	3.5368	-0.202150	-1.12988
p-Xylene	$616 \cdot 15$	$3 \cdot 5130$	-0.383564	-0.930286
Ethylbenzene	$617 \cdot 12$	3.6019	-0.127021	-1.25222
Naphthalene	$748 \cdot 40$	$4 \cdot 053$	-1.324625	-0.0449344
Methanol	512.64	8.0850	1.09039	-2.30599
Ethanol	513.92	$6 \cdot 13087$	3.98848	-5.78227
1-Propanol	$536 \cdot 78$	$5 \cdot 15111$	$3 \cdot 86014$	-6.01698
2-Propanol	$508 \cdot 30$	4.7424	$4 \cdot 21376$	-6.43670
1-Butanol	563.05	4.4126	5.18609	-7.87457
2-Butanol	$536 \cdot 01$	$4 \cdot 18975$	3.91386	-6.59239
1-Pentanol	$588 \cdot 15$	3.90945	9.36328	-13.1866
1-Octanol	652.50	$2 \cdot 87376$	5:99078	-9.75229
Acetone	$508 \cdot 10$	$4 \cdot 69993$	-1.02282	-0.0780193
Methyl Ethyl Ketone	$536 \cdot 78$	$4 \cdot 22177$	0.723920	-2.200431
Diethyl Ether	$466 \cdot 74$	3.6461	-0.891355	-0.351476
Methylamine	$430 \cdot 0$	$7 \cdot 4333$	0.593761	-2.21029
Dimethylamine	$437 \cdot 7$	5.3033	2.04958	-4.25281
Trimethylamine	$433 \cdot 3$	4.08396	-1.17641	$0 \cdot 128988$
Ethylamine	$456 \cdot 35$	5.64137	-1.33135	-0.0862948
Diethylamine	496.45	3.7054	0.229037	-1.75148
Propylamine	497.0	$4 \cdot 8067$	-1.36550	-0.0435724
Monofluoromethane	315.0	5.55736	-0.910626	0.0270614
Difluoromethane	351.54	$5 \cdot 8270$	0.176755	-1.40142
Trifluoromethane	299.06	$4 \cdot 8409$	0.520617	-1.87910
Monochloromethane	416.27	$6 \cdot 69718$	-1.93639	1.11960
Trichloromethane	$536 \cdot 40$	$5 \cdot 36576$	-1.39193	$0 \cdot 366198$
Tetrachloromethane	$556 \cdot 40$	4.55078	-0.834464	-0.382380

${ }^{a}$ Parameters of the Wagner equation were used as reported by McGerry ${ }^{15}$, and the substanceis inserted into the group for which reliable data on saturated vapour pressures exist; ${ }^{b}$ see ref. ${ }^{19}$; ${ }^{c}$ see ref. ${ }^{18 ;}{ }^{d}$ see ref. ${ }^{17}$; ${ }^{e}$ parameters of the Wagner equation were used as reported by McGerry ${ }^{15}$,

From the first equation we determine the value of $b=b_{c}$, from the second the value of $a=a_{\mathrm{c}}$, and in the end from the third equation, $c=c_{c}$. If $z_{c}=1 / 3$, then the first equation can be written in the form

$$
\begin{equation*}
(x+1)^{3}-2=0 \tag{A1-5}
\end{equation*}
$$

Table IV
(Continued)

a_{3}	a_{4}	$T_{\min }, \mathrm{K}$	$T_{\text {:nax }}, \mathrm{K}$	$\sigma_{\mathrm{p}}, \%$	Note
0.449273	-0.123275	340	625	0.066	a
0.532670	-0.131893	330	610	0.065	a
0.495236	-0.134242	330	610	0.069	a
0.608946	-0.145799	350	610	0.065	a
0.428092	-0.171579	400	730	0.096	e
0.474958	-0.0815079	288	508	0.041	a
1.41617	-0.168150	303	503	0.021	a
1.66488	-0.189126	310	530	0.024	a
1.74618	-0.190999	300	500	0.020	a
$2 \cdot 41671$	-0.315513	325	555	0.037	a
2.15051	-0.281483	315	535	0.029	a
4.38818	-0.704750	340	580	0.097	a
$3 \cdot 79128$	- 0.733729	385	645	0.135	a
$0 \cdot 179575$	-0.0751514	270	500	0.067	a
$0 \cdot 860058$	$-0 \cdot 186661$	305	535	0.072	a
0.346457	-0.103562	250	460	0.064	a
0.987597	-0.215508	230	420	0.073	a
$1 \cdot 84012$	-0.387439	240	430	0.093	a
0.186072	-0.073486	220	430	0.067	a
0.400139	-0.118334	245	455	0.061	a
0.768983	$-0 \cdot 150700$	260	490	0.059	a
$0 \cdot 376408$	-0.115818	265	495	0.064	a
0.0729527	-0.0327844	160	310	0.059	a
0.564097	-0.133417	180	348	0.077	a
0.764736	-0.169792	155	293	0.074	a
-0.0991497	-0.0461333	175	415	0.135	a
0.116636	-0.0661480	275	535	0.066	a
$0 \cdot 447401$	-0.139580	280	550	0.080	a

and the substance is inserted into the group for which less reliable data on saturated vapour pressures exist.
where $b=x V_{\mathrm{mc}}, x=2^{1 / 3}-1$. From relation $V_{\mathrm{mc}}=\boldsymbol{R} T_{\mathrm{c}} /\left(3 p_{\mathrm{c}}\right)$ then follow the well--known relations

$$
\begin{equation*}
a_{\mathrm{c}}=0.42748 R^{2} T_{\mathrm{c}}^{2} / p_{\mathrm{c}}, \quad b_{\mathrm{c}}=c_{\mathrm{c}}=0.08664 R T_{\mathrm{c}} / p_{\mathrm{c}} \tag{A1-6}
\end{equation*}
$$

[^1]
APPENDIX 2

Relationships for Calculating Thermodynamic Quantities

The relationships for calculating thermodynamic quantities in Eqs (4)-(6) can be derived from the thermodynamic relation ${ }^{24,25}$
$\ln f=\ln \left(\boldsymbol{R} T / V_{\mathrm{m}}\right)-(\boldsymbol{R} \boldsymbol{T})^{-1} \int_{\infty}^{\gamma_{\mathrm{m}}}\left(p-\boldsymbol{R} \boldsymbol{T} / V_{\mathrm{m}}\right) \mathrm{d} V_{\mathrm{m}}+p V_{\mathrm{m}}+p V_{\mathrm{m}} /(\boldsymbol{R} T)-1 \quad(A 2-1)$
and its derivative with respect to volume

$$
\begin{equation*}
\left(\partial \ln f / \partial V_{\mathrm{m}}\right)_{\mathrm{T}}=\left(\partial p / \partial V_{\mathrm{m}}\right)_{\mathrm{T}} V_{\mathrm{m}} /(\boldsymbol{R} \boldsymbol{T}) \tag{A2-2}
\end{equation*}
$$

For equation of state (1) therefore holds

$$
\begin{gather*}
\left(\partial p / \partial V_{\mathrm{m}}\right)_{\mathrm{T}}=-\boldsymbol{R} T /\left(V_{\mathrm{m}}-b\right)^{2}+a\left(2 V_{\mathrm{m}}+c\right) /\left[V_{\mathrm{m}}^{2}\left(V_{\mathrm{m}}+c\right)^{2}\right], \tag{A2-3}\\
\ln f=\ln \left[\boldsymbol{R} T /\left(V_{\mathrm{m}}-b\right)\right]+a(c \boldsymbol{R} T)^{-1} \ln \left[V_{\mathrm{m}} /\left(V_{\mathrm{m}}+c\right)\right]+b /\left(V_{\mathrm{m}}-b\right)- \\
-a /\left[\boldsymbol{R} T\left(V_{\mathrm{m}}+c\right)\right] . \tag{A2-4}
\end{gather*}
$$

Calculation of the values of derivatives $\left(\partial p / \partial a_{\mathrm{j}}\right)_{\mathrm{r}, \mathbf{v}_{\mathrm{m}}}$ and $/$ or $\left(\partial \ln f / \partial a_{\mathrm{j}}\right)_{\mathrm{r}, \mathbf{v}_{\mathrm{m}}}$ is apparently simple.

APPENDIX 3

Calculation of the Value of $\min S_{i}$
The minimum value of $S_{\mathrm{i}}\left(\min S_{\mathrm{i}}\right)$ in objective function (13) or the values of $x_{1, \text { calce }}$, $y_{1, \text { calc }}, p_{\text {calc }}$ of the i-th experimental point which yield the minimum value of S_{i} were determined in the following way:

At a constant temperature we can write

$$
\begin{gathered}
x_{1, \text { calc }}^{\text {new }}=x_{1}^{\text {old }}+\Delta x_{1}, \\
y_{1, \text { calc }}^{\text {new }}=y_{1}^{\text {old }}+\Delta y_{1}=y_{1}^{\text {old }}+\left(\partial y_{1} / \partial x_{1}\right)_{\mathrm{T}} \Delta x_{1}=y_{1}^{\text {old }}+k_{y} \Delta x_{1}, \quad(A 3-1) \\
p_{\text {calc }}^{\text {new }}=p^{\text {old }}+\Delta p=p^{\text {old }}+\left(\partial p / \partial x_{1}\right)_{\mathrm{T}} \Delta x_{1}=p^{\text {old }}+k_{\mathrm{p}} \Delta x_{1} .
\end{gathered}
$$

After inserting these relations into the relation for S_{i} in Eq. (13) we get, from condition $\left(\partial S_{\mathrm{i}} / \partial \Delta x_{1}\right)=0$, the relation

$$
\begin{gather*}
\Delta x_{1}=\left[\left(x_{1, \text { exp }}-x_{1}^{\text {old }}\right) / \sigma_{x_{1}}^{2}+\left(y_{1, \exp }-y_{1}^{\text {old }}\right) / \sigma_{y_{1}}^{2}+\left(p_{\text {exp }}-p^{\text {old }}\right) / \sigma_{\mathrm{p}}^{2}\right] . \\
\cdot\left[1 / \sigma_{x_{1}}^{2}+\left(k_{y} / \sigma_{y_{1}}\right)^{2}+\left(k_{\mathrm{p}} / \sigma_{\mathrm{p}}\right)^{2}\right]^{-1} . \tag{A3-2}
\end{gather*}
$$

On the basis of the calculated value of Δx_{1} we obtain next approximation of x_{1} and as soon as the increments in composition of phases and in pressure decrease below the prescribed limit, the calculation is finished. The values of k_{y} and k_{p} are given by the relations

$$
\begin{gathered}
k_{\mathrm{y}}=\left(\partial y_{1} / \partial x_{1}\right)_{\mathrm{T}}=(\mathrm{G} 11)^{\mathrm{L}} \sum_{i=1}^{2} x_{\mathrm{i}}\left(\bar{V}_{\mathrm{mi}}^{\mathrm{g}}-\bar{V}_{\mathrm{mi}}^{\mathrm{L}}\right) /\left[(\mathrm{G} 11)^{\mathrm{g}} \sum_{i=1}^{2} y_{\mathrm{i}}\left(\bar{V}_{\mathrm{mi}}^{\mathrm{g}}-\bar{V}_{\mathrm{mi}}^{\mathrm{L}}\right)\right],(A 3-3) \\
k_{\mathrm{p}}=\left(\partial p / \partial x_{1}\right)_{\mathrm{T}}=(\mathrm{G} 11)^{\mathrm{L}}\left(y_{1}-x_{1}\right) \boldsymbol{R T} / \sum_{i=1}^{2} y_{i}\left(\bar{V}_{\mathrm{mi}}^{\mathrm{g}}-\bar{V}_{\mathrm{mi}}^{\mathrm{L}}\right)
\end{gathered}
$$

where

$$
\begin{equation*}
\mathrm{G} 11=\left\{\partial^{2}\left[\mathrm{G}_{\mathrm{m}} /(R T)\right] / \partial x_{1}^{2}\right\}_{\mathrm{T}, \mathrm{p}} \tag{A3-4}
\end{equation*}
$$

On using the formerly defined dimensionless Q quantities ${ }^{25}$, it holds

$$
\begin{gathered}
\sum_{i=1}^{2} x_{i}\left(\bar{V}_{\mathrm{mi}}^{\mathrm{g}}-\bar{V}_{\mathrm{mi}}^{\mathrm{L}}\right)=V_{\mathrm{m}}^{\mathrm{g}}-V_{\mathrm{m}}^{\mathrm{L}}+\left(V_{\mathrm{m}}^{\mathrm{g}} / Q_{\mathrm{d}}^{\mathrm{g}}\right)\left(x_{1} \tilde{z}_{1}^{\mathrm{g}}+x_{2} \tilde{z}_{2}^{\mathrm{g}}-z^{\mathrm{g}}\right) \\
\sum_{i=1}^{2} y_{i}\left(\bar{V}_{\mathrm{mi}}^{\mathbf{g}}-\bar{V}_{\mathrm{mi}}^{\mathrm{L}}\right)=V_{\mathrm{m}}^{\mathrm{g}}-V_{\mathrm{m}}^{\mathrm{L}}-\left(V_{\mathrm{m}}^{\mathrm{L}} / Q_{\mathrm{d}}^{\mathrm{L}}\right)\left(y_{1} \tilde{z}_{1}^{\mathrm{L}}+y_{2} \tilde{z}_{2}^{\mathrm{L}}-z^{\mathrm{L}}\right), \quad(A 3-5) \\
(\mathrm{G} 11)^{\mathrm{L}}=1 /\left(x_{1} x_{2}\right)+\left(\partial Q_{\mathrm{F}, 1} / \partial x_{1}\right)^{\mathrm{L}}-\left(\partial Q_{\mathrm{F}, 2} / \partial x_{1}\right)^{\mathrm{L}}-\left(\tilde{z}_{1}^{\mathrm{L}}-\tilde{z}_{2}^{\mathrm{L}}\right)^{2} / Q_{\mathrm{d}}^{\mathrm{L}} \\
(\mathrm{G} 11)^{\mathrm{g}}=1 /\left(y_{1} y_{2}\right)+\left(\partial Q_{\mathrm{F}, 1} / \partial y_{1}\right)^{\mathrm{g}}-\left(\partial Q_{\mathrm{F}, 2} / \partial y_{1}\right)^{\mathrm{g}}-\left(\tilde{z}_{1}^{\mathrm{g}}-\tilde{z}_{2}^{\mathrm{g}}\right)^{2} / Q_{\mathrm{d}}^{\mathrm{g}}
\end{gathered}
$$

The procedure of calculation is as follows:
a) For the given experimental point at temperature T we choose $x_{1}^{\text {old }}$ (which may be, e.g., the experimental value of x_{1}).
b) By means of the procedure for calculating the boiling point pressure (see, e.g., ref. ${ }^{25}$) we determine the values of $p^{\text {old }}$ and $y_{1}^{\text {old }}$ for the values of $T, x_{1}^{\text {old }}$.
c) From relations $(A 3-3)-(A 3-5)$ we calculate the respective quantities and on their basis, Δx_{1} from Eq. $(A 3-2)$. As soon as the increments in composition of phases and in pressure are sufficiently low, the calculation is finished.

Note 1. Another procedure which consideres also the possible errors in temperature was suggested by Aim and coworkers ${ }^{26}$.

Note 2 . Considering that in the proposed modification of the RKS equation changes only the temperature dependence of parameters a_{i} of pure substances, it is possible to apply - for calculating the fugacity coefficient of component i, the compressibility factor, Q_{d}, etc. - the procedures for calculating these quantities valid for the RKS equation (naturally, on changing the calculation of the individual $a_{i}(T)$ parameters).

LIST OF SYMBOLS

a, b, c	constants of equation of state
B	second virial coefficient
c	subscript, quantity corresponding to critical point
d	molar density
f	fugacity
G11	$=\left(\partial^{2}\left[G_{\mathrm{m}} /(R T)\right] / \partial x_{1}^{2}\right)_{\mathrm{T}, \mathrm{p}}$
$G_{\text {m }}$	molar Gibbs energy of mixing
k_{12}	interaction parameter (Eq. (12))
M	number of adjustable parameters $a_{1}, \ldots, a_{\mathrm{M}}$ considered
N	number of components in system
$n_{p}, n_{B}, n_{\text {LV }}$	number of experimental data points on saturated
$p, p^{\text {o }}$	vapour pressures, virial coefficients, vapour-liquid equilibrium, respectively pressure, saturated vapour pressure, respectively
$Q_{\text {d }}$	$=z+d(\partial z / \partial d)_{\mathrm{T}, \mathrm{x}}$ dimensionless quantity
$Q_{\text {F }}$	$=\int_{0}^{d}(z-1) \mathrm{dln} d$ dimensionless quantity
$Q_{\text {F,1 }}$	$=Q_{\mathrm{F}}+x_{2}\left(\partial Q_{\mathrm{F}} / \partial x_{1}\right)_{\mathrm{T}, \mathrm{d}}$ dimensionless quantity (valid for $N=2$)
$\boldsymbol{Q}_{\mathbf{F}, 2}$	$=Q_{\mathrm{F}}-x_{1}\left(\partial Q_{\mathrm{F}} / \partial x_{1}\right)_{\mathrm{T}, \mathrm{d}}$ dimensionless quantity (valid for $N=2$)
\boldsymbol{R}	gas constant
r	subscript, reduced quantity
S	objective function (Eq. (13))
S_{y}	$=\left(\sum_{i=1}^{n_{\mathrm{LV}}}\left\|y_{1, \mathrm{exp}}-y_{1, \mathrm{calc}}\right\|_{\mathrm{i}}\right) / n_{\mathrm{LV}}$
${ }^{\text {pLLV}}$	$=\left(\sum_{i=1}^{n_{\mathrm{LV}}}\left\|p_{\mathrm{exp}}-p_{\mathrm{calc}}\right\|_{\mathrm{i}}\right) / n_{\mathrm{LV}}$
T	thermodynamic temperature
$V_{\text {m }}$	molar volume
$\bar{V}_{\text {mi }}$	partial molar volume of i-th component
w	weight
x_{i}	mole fraction of i-th component in liquid phase
y_{i}	mole fraction of i-th component in vapour phase
z	compressibility factor
\tilde{z}_{1}	$=z+x_{2}\left(\partial z / \partial x_{1}\right)_{\mathrm{T}, \mathrm{d}}$ auxiliary quantity (valid for $N=2$)
\tilde{z}_{2}	$=z-x_{1}\left(\partial z / \partial x_{1}\right)_{T, \mathrm{~d}}$ auxiliary quantity (valid for $N=2$)
$\sigma_{\text {B }}$	$=\left\{\left[\sum_{i=1}^{n_{\mathrm{B}}}\left(B_{\mathrm{exp}}-B_{\mathrm{calc}}\right)_{\mathrm{i}}^{2} \mathrm{~J} /\left(n_{\mathrm{B}}-M\right)\right\}^{1 / 2}\right.$
$\sigma_{\text {p }}$	$=100\left\{\left\langle\sum_{i=1}^{n_{\mathrm{p}}}\left[\left(p_{\text {exp }}^{o}-p_{\mathrm{ca} \mathrm{c} \mathrm{c}}^{\mathrm{o}}\right) / p_{\mathrm{exp}}^{\mathrm{o}}\right]_{\mathrm{i}}^{2}\right\rangle /\left(n_{\mathrm{p}}-M\right)\right\}^{1 / 2}$
$\sigma_{\text {c }}$	$=\left[S /\left(n_{\mathrm{LV}}-1\right)\right]^{1 / 2}$
$\sigma_{x}, \sigma_{y}, \sigma_{p L V}$	standard deviations in composition of liquid and vapour phases and in pressure, respectively, of vapour-liquid equilibrium
ω	acentric factor
$\Delta p_{\mathrm{i}} / p_{\mathrm{i}}$	$=\left(p_{\text {exp }}^{0}-p_{\text {cale }}^{0}\right) / p_{\text {exp }}^{0}$ for i-th point

REFERENCES

1. Kolasinska G.: Fluid Phase Equilib. 27, 289 (1986).
2. Soave G.: Chem. Eng. Sci. 27, 1197 (1972).
3. Peng D. Y., Robinson D. B.: Ind. Eng. Chem., Fundam. 15, 59 (1976).
4. Sandarusi J. A., Kidnay A. J., Yesevage V. F.: Ind. Eng. Chem., Process Des. Dev. 25, 957 (1986).
5. Heyen G.: A Cubic Equation of State with Extended Range of Application, 2nd World Congress of Chemical Engineering, Montreal 1981; cited by ref. ${ }^{1}$.
6. Adachi Y., Lu B. C.-Y.: AIChE J. 30, 991 (1984).
7. Yu J.-M., Lu B. C.-Y.: Fluid Phase Equilib. 34, 1 (1987).
8. Trebble M. A., Bishnoi P. R.: Fluid Phase Equilib. 35, 1 (1987).
9. Fuller G. G.: Ind. Eng. Chem., Fundam. 15, 254 (1976).
10. Grabovski M. S., Daubert T. E.: Ind. Eng. Chem., Process Des. Dev. 18, 300 (1979).
11. Mathias P. M., Copeman T. W.: Fluid Phase Equilib. 13, 91 (1983).
12. Stryjek R., Vera J. H.: Can. J. Chem. Eng. 64, 820 (1986).
13. Lielmezs J., Merriman L. H.: Thermochim. Acta 105, 383 (1986).
14. Gibbons R. M., Laughton A. P.: J. Chem. Soc., Faraday Trans. 2, 80, 1019 (1984).
15. McGerry J.: Ind. Eng. Chem., Process Des. Dev. 22, 313 (1983).
16. Wagner W.: Cryogenics 13, 470 (1973).
17. Salerno S., Cascella M., May D., Watson P., Tassois D.: Fluid Phase Equilib. 27, 15 (1986).
18. Haar L., Gallaghter J. S., Kell G. S.: NBS/NRC Steam Tables. Hemisphere, Washington D.C. 1984.
19. Goodwin R. D.: J. Phys. Chem. Ref. Data 14, 899 (1985).
20. Dymond J. H., Smith E. B.: The Virial Coefficients of Pure Gases and Mixtures. Clarendon Press, Oxford 1980.
21. Dymond J. H., Cholinski J. A., Szafranski A., Wyrzykowska-Stankiewicz D. in: Measurement, Evaluation and Prediction of Phase Equilibria (H. V. Kehiaian and H. Renon, Eds). Elsevier, Amsterdam 1986.
22. Adachi Y., Lu B. C.-Y.: Can. J. Chem. Eng. 63, 497 (1985).
23. Flebbe J. L., Barclay D. A., Manley E. D.: J. Chem. Eng. Data 27, 405 (1982).
24. Rowlinson J. S.: Liquids and Liquid Mixtures. Butterworths, London 1969.
25. Novák J. P., Rủžička V., Malijevský A., Matous J., Linek J.: Collect. Czech. Chem. Commun. 50, 1 (1985).
26. Aim K., Boublik T.: Fluid Phase Equilib. 29, 583 (1986).

Translated by J. Linek.

[^0]: Collect. Czech. Chem. Commun. (Vol. 54) (1989)

[^1]: Collect. Czech. Chem. Commun. (Vol. 54) (1989)

